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Abstract
The two-dimensional Hubbard model is studied within the composite operator
method (COM) with the electronic self-energy computed in the self-consistent
Born approximation (SCBA). The main idea of the COM is to describe
interacting electrons in terms of the composite elementary excitations appearing
in the system owing to strong correlations; the residual interactions among these
excitations are treated within the SCBA. By analysing the spectral function
A(k, ω) on varying the filling, we find, at high doping, the ordinary Fermi-
liquid behaviour of a weakly interacting metal and, at low doping, the opening
of a pseudogap, as reported for cuprates superconductors.

1. Introduction

One of the most intriguing challenges in modern condensed matter physics is the theoretical
description of the anomalous behaviours experimentally observed in novel materials. By
anomalous behaviours we mean those not predicted by standard many-body theory; that is,
behaviours in contradiction with Fermi-liquid framework and diagrammatic expansions. The
most important characteristic of novel materials is the strong correlation among electrons that
makes inapplicable classical schemes based on the band picture. It is necessary to pass from
a single-electron physics to a many-electron physics, where the dominant contribution comes
from the correlations among the electrons. Usual perturbation schemes are inadequate and new
concepts must be introduced.

The classical techniques are based on the hypothesis that the interaction among the
electrons is weak and can be treated in the framework of perturbation schemes. However,
as many experimental and theoretical studies of highly correlated electron systems have
shown with more and more convincing evidence, all these methods are no more adequate
and different approaches must be considered. The main concept that breaks down is the
existence of the electrons as particles with some well-defined and intrinsic properties. The
presence of interaction modifies the properties of the particles and at a macroscopic level, the
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level of observation, what are observed are new particles with new peculiar properties entirely
determined by the dynamics and by the boundary conditions. These new objects appear as
the final result of the modifications imposed by the interactions on the original particles and
contain, at the very beginning, the effects of correlations.

On the basis of this evidence, one can be induced to move attention from the original fields
to the new fields generated by the interaction. The operators describing these excitations, once
they have been found, can be written in terms of the original ones and are known as composite
operators.

The necessity of developing a formulation to treat composite excitations as fundamental
objects has been noticed for the many-body problem of condensed matter physics long ago.
Recent years have seen remarkable developments in many-body theory in the form of an
assortment of techniques that may be termed composite particle methods. The beginnings of
these types of techniques may be traced back to the work of Bogoliubov [1] and later to that of
Dancoff [2]. The work of Zwanzig [3], Mori [4] and Umezawa [5] has to be mentioned. Closely
related to this work is that of Hubbard [6–8], Rowe [9], Roth [10] and Tserkovnikov [11, 12].
The slave boson method [13–15], the spectral density approach [16, 17] and the composite
operator method (COM) [18] are also along similar lines. This large class of theories is founded
on the conviction that an analysis in terms of elementary fields might be inadequate for a system
dominated by strong interactions.

All these approaches are very promising because all the different approximation schemes
are constructed on the basis of interacting particles: some amount of the interaction is already
present in the chosen basis and permits us to overcome the problem of finding an appropriate
expansion parameter. However, one price must be paid. In general, the composite fields
are neither Fermi nor Bose operators, since they do not satisfy canonical (anti)commutation
relations, and their properties, because of the inherent definition, must be self-consistently
determined. They can only be recognized as fermionic or bosonic operators according to the
number of constituting original particles. New techniques of calculus have to be developed in
order to treat with composite fields. In developing perturbation calculations where the building
blocks are now the propagators of composite fields, one cannot use the consolidated scheme:
diagrammatic expansions, Wick’s theorem and many other techniques are no more valid. The
formulation of the Green’s function (GF) method must be revisited and new frameworks of
calculations have to be formulated.

Following these ideas, in the last few years we have been developing a systematic approach
(COM) to the study of highly correlated systems. The formalism is based on two main ideas: (i)
propagators of composite operators as building blocks at the basis of approximate calculations;
(ii) use of algebra constraints to fix the representation of the GF in order to maintain the
algebraic and symmetry properties; these constraints will determine the unknown parameters
appearing in the formulation due to the non-canonical algebra of composite operators.

Cuprate superconductors, which are turning 20 years old this year [19], display a full range
of anomalous features, mainly appearing in the underdoped region, in almost all experimentally
measurable physical properties [20–22]. According to this, their microscopic description is still
an open problem: non-Fermi-liquid response, quantum criticality, pseudogap formation, ill-
defined Fermi surface, kinks in the electronic dispersion, etc remain still unexplained (or at least
controversially debated) anomalous features [23, 24]. Unfortunately, although fundamental for
benchmarking and fine-tuning analytical theories, numerical approaches [25] cannot be of help
to solve the puzzle of underdoped cuprates owing to their limited resolution in frequency and
momentum. On the other hand, there are not so many analytical approaches capable of dealing
with the quite complex aspects of underdoped cuprates phenomenology. Among others, the
most promising approaches available in the literature can be divided into two classes. One class
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makes use of phenomenological expressions for the electronic self-energy and the electronic
spin susceptibility [26–28]. The electronic self-energy is usually computed as the convolution
of the electronic propagator and of the electronic spin susceptibility. Then, the electronic spin
susceptibility is modelled phenomenologically, parameterizing correlation length and damping
as functions of doping and temperature according to the common belief that the electronic
spin susceptibility should present a well-developed mode at M = (π, π) with a damping of
Landau type. All cluster-dynamical-mean-field-like theories (the cellular dynamical mean-field
theory [29], the dynamical cluster approximation [30] and the cluster perturbation theory [31])
belong to the second class. These theories usually self-consistently map the generic Hubbard
problem to a few-site lattice Anderson problem and solve this latter by means of, mainly,
numerical techniques. What really distinguishes one formulation from another, within this
second class, is the procedure used to map the small cluster on the infinite lattice. Anyway,
it is worth noticing that these approaches often rely on numerical methods (with the above-
mentioned limitations in frequency and momentum resolutions) in order to close their self-
consistency cycles. The COM(SCBA) does not belong to any of these two classes of theoretical
formulations as it is completely microscopic, exclusively analytical, and fully self-consistent.
Starting from a basis of n composite operators (the two Hubbard operators in this specific case),
the Dyson equation is formulated in terms of the n-pole approximated Green’s function instead
of the electronic non-interacting Green’s function. According to this, the residual self-energy is
the propagator of higher-order composite operators (higher order with respect to the composite
operators belonging to the chosen basis). In particular, in the case analysed in the manuscript,
the residual self-energy is the propagator of the electronic operators dressed by charge, spin, and
pair fluctuations on the nearest-neighbour sites. Then, within the SCBA, we have shown that it
is possible to microscopically obtain a residual self-energy written in terms of the convolution
of the electronic propagator and of the electronic charge, spin, and pair susceptibilities. Finally,
we compute the susceptibilities within a pole approximation and close, fully analytically, the
self-consistency cycle.

In this manuscript, we will show how it is possible to get some of the experimentally
observed underdoped cuprate behaviours in the two-dimensional Hubbard model within a
completely analytical self-consistent approach, the composite operator method (COM) [18]
with electronic self-energy computed in the self-consistent Born approximation (SCBA) [32].
We will show how Fermi arcs develop out of a large Fermi surface and how pseudogap shows
itself in the dispersion.

2. The two-dimensional Hubbard model

The Hamiltonian of the two-dimensional Hubbard model reads as

H =
∑

ij

(−μδij − 4tαij)c
†(i)c( j)+ U

∑

i

n↑(i)n↓(i) (1)

where

c(i) =
(

c↑(i)
c↓(i)

)
(2)

is the electron field operator in spinorial notation and the Heisenberg picture (i = (i, ti )), i = Ri

is a vector of the Bravais lattice, nσ (i) = c†
σ (i)cσ (i) is the particle density operator for spin

σ , n(i) = ∑
σ nσ (i) is the total particle density operator, μ is the chemical potential, t is

the hopping integral, and the energy unit, U , is the Coulomb on-site repulsion and αij is the
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projector on the nearest-neighbour sites

αij = 1

N

∑

k

eik·(Ri−Rj)α(k) α(k) = 1
2 [cos(kx a)+ cos(kya)] (3)

where k runs over the first Brillouin zone, N is the number of sites and a is the lattice constant.

2.1. Green’s function and Dyson equation for composite fields

Following COM prescriptions [18], we chose a basic field; in particular, we select the composite
doublet field operator

ψ(i) =
(
ξ(i)
η(i)

)
(4)

where η(i) = n(i)c(i) and ξ(i) = c(i)− η(i) are the Hubbard operators describing the main
subbands. This choice is guided by the hierarchy of the equations of motion and by the fact
that ξ(i) and η(i) are eigenoperators of the interacting term in the Hamiltonian (1). The field
ψ(i) satisfies the Heisenberg equation

i
∂

∂ t
ψ(i) = J (i) =

(−μξ(i)− 4tcα(i)− 4tπ(i)
(U − μ)η(i)+ 4tπ(i)

)
(5)

where the higher-order composite field π(i) is defined by

π(i) = 1
2σ

μnμ(i)c
α(i)+ c(i)c†α(i)c(i) (6)

with the following notation: nμ(i) = c†(i)σμc(i) is the particle- (μ = 0) and spin-
(μ = 1, 2, 3) density operator, and σμ = (1, �σ), σμ = (−1, �σ), σk (k = 1, 2, 3) are the
Pauli matrices. Hereafter, for any operator �(i), we use the notation �α(i, t) = ∑

j αij�(j, t).
It is always possible to decompose the source J (i) under the form

J (i) = ε(−i∇)ψ(i)+ δ J (i) (7)

where the linear term represents the projection of the source on the basis ψ(i) and is calculated
by means of the equation

〈{δ J (i, t), ψ†(j, t)}〉 = 0 (8)

where 〈· · ·〉 stands for the thermal average taken in the grand-canonical ensemble.
This constraint assures that the residual current δ J (i) contains all and only the physics

orthogonal to the chosen basis ψ(i). The action of the derivative operator ε(−i∇) on ψ(i) is
defined in momentum space

ε(−i∇)ψ(i) = ε(−i∇) 1√
N

∑

k

eik·Riψ(k, t) = 1√
N

∑

k

eik·Riε(k)ψ(k, t) (9)

where ε(k) is named the energy matrix.
The constraint (8) gives

m(k) = ε(k)I (k) (10)

after defining the normalization matrix

I (i, j) = 〈{ψ(i, t), ψ†(j, t)}〉 = 1

N

∑

k

eik·(Ri−Rj) I (k) (11)

and the m-matrix

m(i, j) = 〈{J (i, t), ψ†(j, t)}〉 = 1

N

∑

k

eik·(Ri−Rj)m(k). (12)
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Since the components of ψ(i) contain composite operators, the normalization matrix
I (k) is not the identity matrix and defines the spectral content of the excitations. In fact,
the composite operator method has the advantage of describing crossover phenomena as the
phenomena in which the weight of some operator is shifted to another one.

By considering the two-time thermodynamic Green’s functions [33–35], let us define the
retarded function

G(i, j) = 〈R[ψ(i)ψ†( j)]〉 = θ(ti − t j )〈{ψ(i), ψ†( j)}〉. (13)

By means of the Heisenberg equation (5) and using the decomposition (7), the Green’s
function G(i, j) satisfies the equation

�(∂i )G(i, j)�†(
←−
∂ j ) = �(∂i )G0(i, j)�†(

←−
∂ j )+ 〈R[δ J (i)δ J †( j)]〉 (14)

where the derivative operator �(∂i) is defined as

�(∂i ) = i
∂

∂ ti
− ε(−i∇i ) (15)

and the propagator G0(i, j) is defined by the equation

�(∂i )G
0(i, j) = iδ(ti − t j)I (i, j). (16)

By introducing the Fourier transform

G(i, j) = 1

N

∑

k

i

2π

∫
dω eik·(Ri−Rj)−iω(ti −t j )G(k, ω) (17)

equation (14) in momentum space can be written as

G(k, ω) = G0(k, ω)+ G0(k, ω)I −1(k)�(k, ω)G(k, ω) (18)

and can be formally solved as

G(k, ω) = 1

ω − ε(k)− �(k, ω)
I (k) (19)

where the self-energy �(k, ω) has the expression

�(k, ω) = Birr(k, ω)I −1(k) (20)

with

B(k, ω) = F〈R[δ J (i)δ J †( j)]〉. (21)

The notation F denotes the Fourier transform and the subscript irr indicates that the
irreducible part of the propagator B(k, ω) is taken. Equation (18) is nothing else than the Dyson
equation for composite fields and represents the starting point for a perturbative calculation in
terms of the propagator G0(k, ω). This quantity will be calculated in the next section. Then,
attention will be given to the calculation of the self-energy �(k, ω). It should be noted that
the computation of the two quantities G0(k, ω) and �(k, ω) are intimately related. The total
weight of the self-energy corrections is bounded by the weight of the residual source operator
δ J (i). According to this, it can be made smaller and smaller by increasing the components
of the basis ψ(i) (e.g. by including higher-order composite operators appearing in δ J (i)).
The result of such a procedure will be the inclusion in the energy matrix of part of the self-
energy as an expansion in terms of coupling constants multiplied by the weights of the newly
included basis operators. In general, the enlargement of the basis leads to a new self-energy
with a smaller total weight. However, it is necessary to point out that this process can be
quite cumbersome and the inclusion of fully momentum-and frequency-dependent self-energy
corrections can be necessary to effectively take into account low-energy and virtual processes.
According to this, one can choose a reasonable number of components for the basic set and
then use another approximation method to evaluate the residual dynamical corrections.
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2.2. Calculation of G0(k, ω)

According to equation (16), the free propagator G0(k, ω) is determined by the following
expression

G0(k, ω) = 1

ω − ε(k)
I (k). (22)

For a paramagnetic state, straightforward calculations give the following expressions for
the normalization I (k) and energy ε(k) matrices:

I (k) =
(

1 − n/2 0
0 n/2

)
=

(
I11 0
0 I22

)
(23)

ε11(k) = −μ− 4t I −1
11 [�+ (1 − n + p)α(k)]

ε12(k) = 4t I −1
22 [�+ (p − I22)α(k)]

ε21(k) = 4t I −1
11 [�+ (p − I22)α(k)]

ε22(k) = U − μ− 4t I −1
22 [�+ pα(k)]

(24)

where n = 〈n(i)〉 is the filling and

� = 〈ξα(i)ξ†(i)〉 − 〈ηα(i)η†(i)〉
p = 〈nαμ(i)nμ(i)〉 − 〈[c↑(i)c↓(i)]αc†

↓(i)c
†
↑(i)〉.

(25)

Then, (22) can be written in spectral form as

G0(k, ω) =
2∑

n=1

σ (n)(k)
ω − En(k)+ iδ

. (26)

The energy spectra En(k) and the spectral functions σ (n)(k) are given by

E1(k) = R(k) + Q(k) E2(k) = R(k)− Q(k) (27)

σ
(1)
11 (k) = I11

2

[
1 + g(k)

2Q(k)

]
σ
(2)
11 (k) = I11

2

[
1 − g(k)

2Q(k)

]

σ
(1)
12 (k) = m12(k)

2Q(k)
σ
(2)
12 (k) = −m12(k)

2Q(k)

σ
(1)
22 (k) = I22

2

[
1 − g(k)

2Q(k)

]
σ
(2)
22 (k) = I22

2

[
1 + g(k)

2Q(k)

]
(28)

where

R(k) = −μ− 4tα(k) + 1

2
U − ε12(k)

2I11

Q(k) = 1

2

√

g2(k)+ 4ε2
12(k)I22

I11

g(k) = −U + 1 − n

I11
ε12(k).

(29)

The energy matrix ε(k) contains three parameters: μ, the chemical potential; �, the
difference between upper and lower intra-subband contributions to kinetic energy; and p,
a combination of the nearest-neighbour charge–charge, spin–spin and pair–pair correlation
functions. These parameters will be determined in a self-consistent way by means of algebra
constraints in terms of the external parameters n, U , and T .
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2.3. Calculation of �(k, ω)

The calculation of the self-energy �(k, ω) requires the calculation of the higher-order
propagator B(k, ω) (cf (21)). We shall compute this quantity by using the self-consistent Born
approximation (SCBA). By neglecting the pair term c(i)c†α(i)c(i), the source J (i) can be
written as

J (i, t) =
∑

j

a(i, j, t)ψ(j, t) (30)

where

a11(i, j, t) = −μδij − 4tαij − 2tσμnμ(i)αij

a12(i, j, t) = −4tαij − 2tσμnμ(i)αij

a21(i, j, t) = 2tσμnμ(i)αij

a22(i, j, t) = (U − μ)δij + 2tσμnμ(i)αij.

(31)

Then, for the calculation of Birr(i, j) = 〈R[δ J (i)δ J †( j)]〉irr, we approximate

δ J (i, t) ≈
∑

j

[a(i, j, t)− 〈a(i, j, t)〉]ψ(j, t). (32)

Therefore

Birr(i, j) = 4t2 F(i, j)(1 − σ1) (33)

where we defined

F(i, j) = 〈R[σμδnμ(i)cα(i)c†α( j)δnλ( j)σ λ]〉 (34)

with δnμ(i) = nμ(i)− 〈nμ(i)〉. The self-energy (20) is written as

�(k, ω) = 4t2 F(k, ω)
(

I −2
11 −I −1

11 I −1
22

−I −1
11 I −1

22 I −2
22 .

)
(35)

In order to calculate the retarded function F(i, j), first we use the spectral theorem to
express

F(i, j) = i

2π

∫ +∞

−∞
dω e−iω(ti −t j )

1

2π

∫ +∞

−∞
dω′ 1 + e−βω′

ω − ω′ + iε
C(i − j, ω′) (36)

where C(i − j, ω′) is the correlation function

C(i, j) = 〈σμδnμ(i)cα(i)c†α( j)δnλ( j)σ λ〉 = 1

2π

∫
dω e−iω(ti −t j )C(i − j, ω). (37)

Next, we use the mode coupling approximation (SCBA) and approximate

〈σμδnμ(i)cα(i)c†α( j)δnλ( j)σ λ〉 ≈ 〈δnμ(i)δnμ( j)〉〈cα(i)c†α( j)〉. (38)

By means of this decoupling and using again the spectral theorem, we finally have

F(k, ω) = 1

π

∫ +∞

−∞
dω′ 1

ω − ω′ + iδ

a2

(2π)3

∫
d2 p d�α2(p)

×
[

tanh
β�

2
+ coth

β(ω′ −�)

2

]
[Gcc(p,�)][χ(k − p, ω′ −�)] (39)

where Gcc(k, ω) is the retarded electronic Green’s function (cf (13))

Gcc(k, ω) =
2∑

a,b=1

Gab(k, ω) (40)

7
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and

χ(k, ω) = F 〈
R

[
δnμ(i)δnμ( j)

]〉
(41)

is the total charge and spin dynamical susceptibility. The result (39) shows that the calculation
of the self-energy requires the knowledge of the bosonic propagator (41). This problem will be
considered in the following section.

2.4. Calculation of the dynamical susceptibility χ(k, ω)

In this section we shall present a calculation of the charge–charge and spin–spin
propagators (41) within the two-pole approximation. This approximation has shown to be
capable of catching correctly many important physical features of Hubbard model dynamics
(for all details, see [36]).

Let us define the composite bosonic field

N (μ)(i) =
(

nμ(i)
ρμ(i)

)
nμ(i) = c†(i)σμc(i)
ρμ(i) = c†(i)σμcα(i)− c†α(i)σμc(i).

(42)

This field satisfies the Heisenberg equation

i
∂

∂ t
N (μ)(i) = J (μ)(i) =

(
J (μ)1 (i)
J (μ)2 (i)

)
J (μ)1 (i) = −4tρμ(i)

J (μ)2 (i) = Uκμ(i)− 4tlμ(i)
(43)

where the higher-order composite fields κμ(i) and lμ(i) are defined as

κμ(i) = c†(i)σμη
α(i)− η†(i)σμcα(i)+ η†α(i)σμc(i)− c†α(i)σμη(i)

lμ(i) = c†(i)σμcα
2
(i)+ c†α2

(i)σμc(i)− 2c†α(i)σμcα(i)
(44)

and we are using the notation

cα
2
(i, t) =

∑

j

α2
ijc(j, t) =

∑

jl

αilαljc(j, t). (45)

We linearize the equation of motion (43) for the composite field N (μ)(i) by writing

i
∂

∂ t
N (μ)(i, t) =

∑

j

ε(μ)(i, j)N (μ)(j, t) (46)

where the energy matrix is given by

m(μ)(i, j) =
∑

l

ε(μ)(i, l)I (μ)(l, j) (47)

and the normalization matrix I (μ) and the m(μ)-matrix have the following definitions

I (μ)(i, j) = 〈[N (μ)(i, t), N (μ)†(j, t)]〉 (48)

m(μ)(i, j) = 〈[J (μ)(i, t), N (μ)†(j, t)]〉. (49)

As can be easily verified, in the paramagnetic phase the normalization matrix I (μ) does not
depend on the index μ: charge and spin operators have the same weight. The two matrices I (μ)

and m(μ) have the following form in momentum space:

I (μ)(k) =
(

0 I (μ)12 (k)
I (μ)12 (k) 0

)
(50)

m(μ)(k) =
(

m(μ)

11 (k) 0
0 m(μ)

22 (k)

)
(51)

8
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where

I (μ)12 (k) = 4[1 − α(k)]Cα
cc

m(μ)

11 (k) = −4t I (μ)12 (k)

m(μ)

22 (k) = −4t Ilμρμ(k)+ U Iκμρμ(k).

(52)

The parameter Cα
cc is the electronic correlation function Cα

cc = 〈cα(i)c†(i)〉. The quantities
Ilμρμ(k) and Iκμρμ(k) are defined as

Ilμρμ(k) = F〈[lμ(i, t), ρ†
μ(j, t)]〉 Iκμρμ(k) = F〈[κμ(i, t), ρ†

μ(j, t)]〉. (53)

Let us define the causal Green’s function

G(μ)(i, j) = 〈T [N (μ)(i)N (μ)†( j)]〉 = ia2

(2π)3

∫
d2k dω eik·(Ri−Rj)−iω(ti −t j )G(μ)(k,ω). (54)

By means of the equation of motion (46), the Fourier transform of G(μ)(i, j) satisfies the
following equation:

[ω − ε(μ)(k)]G(μ)(k, ω) = I (μ)(k) (55)

where the energy matrix has the explicit form

ε(μ)(k) =
(

0 ε
(μ)

12 (k)
ε
(μ)

21 (k) 0

)
ε
(μ)

12 (k) = −4t

ε
(μ)

21 (k) = m(μ)

22 (k)/I (μ)12 (k).
(56)

The solution of (55) is

G(μ)(k, ω) = �(μ)(k)
[

1

ω + iδ
− 1

ω − iδ

]
+

2∑

n=1

σ (n,μ)(k)

×
[

1 + fB(ω)

ω − ω
(μ)
n (k)+ iδ

− fB(ω)

ω − ω
(μ)
n (k)− iδ

]
(57)

where �(μ)(k) is the zero-frequency function (2 × 2 matrix) [18] and fB(ω) = [eβω − 1]−1

is the Bose distribution function. Correspondingly, the correlation function C (μ)(k, ω) =
〈N (μ)(i)N (μ)†( j)〉 has the expression

C (μ)(k, ω) = 2π�(μ)(k)δ(ω)+ 2π
2∑

n=1

δ[ω − ω(μ)n (k)][1 + fB(ω)]σ (n,μ)(k). (58)

The energy spectra ω(μ)n (k) are given by

ω(μ)n (k) = (−)nω(μ)(k)
ω(μ)(k) =

√
ε
(μ)

12 (k)ε
(μ)

21 (k)
(59)

and the spectral functions σ (n,μ)(k) have the following expression:

σ (n,μ)(k) = I (μ)12 (k)
2

⎛

⎝
ε
(μ)

12 (k)

ω
(μ)
n (k)

1

1 ε
(μ)
21 (k)

ω
(μ)
n (k)

⎞

⎠ . (60)

Straightforward but lengthy calculations give for the two-dimensional (2D) system the
following expressions for the commutators in (53):

Ilμρμ(k) = 3
4 [1 − α(k)](12Cα + Cλ + 6Cμ)− 3[1 − β(k)](Cα + Cμ)

− 3
4 [1 − η(k)](Cα + Cλ + 2Cμ)+ 1

4 [1 − λ(k)]Cλ + 3
2 [1 − μ(k)]Cμ (61)

Iκμρμ(k) = −2[1 − α(k)]D + [1 − 2α(k)](2Eβ + Eη)+ 2β(k)Eβ + η(k)Eη

+ [1 − 2α(k)]aμ + 1
4 [bμ + 2β(k)cμ + η(k)dμ] (62)

9
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where α(k), β(k), η(k), μ(k), and λ(k) are the Fourier transforms of the projectors on the
first, second, third, fourth, and fifth nearest-neighbour sites. The parameters appearing in (61)
and (62) are defined by

E = 〈c(i)η†(i)〉 Cα = 〈cα(i)c†(i)〉
Eβ = 〈cβ(i)η†(i)〉 Cλ = 〈cλ(i)c†(i)〉
Eη = 〈cβ(i)η†(i)〉 Cμ = 〈cμ(i)c†(i)〉

(63)

aμ = 2〈c†(i)σμcα(i)c†(i)σμcα(i)〉 − 〈c†α(i)σμσ
λσμcα(i)nλ(i)〉

bμ = 2〈c†(i)σμc†(i)σμ[c(i)c(i)]α〉 − 〈c†(i)σμσ
λσμc(i)nαλ(i)〉

cμ = 2〈c†(i)σμc†(iη)σμc(iα)c(iα)〉 − 〈c†(i)σμσ
λσμc(iη)nλ(i

α)〉
dμ = 2〈c†(i)σμc†(iβ)σμc(iα)c(iα)〉 − 〈c†(i)σμσ

λσμc(iβ)nλ(i
α)〉

(64)

where we used the notation

i = (ix, i y, t) iβ = (ix + a, i y + a, t)

iα = (ix + a, i y, t) iη = (ix + 2a, i y, t).
(65)

We see that the bosonic Green’s function G(μ)(i, j) = 〈T [N (μ)(i)N (μ)†( j)]〉 depends on
the following set of parameters: Fermionic correlators — Cα , Cλ, Cμ, Eβ , Eη, D; bosonic
correlators — aμ, bμ, cμ, dμ; zero-frequency matrix — �(μ)(k). The fermionic parameters are
calculated through the Fermionic correlation function C(i, j) = 〈ψ(i)ψ†( j)〉. The bosonic
parameters are determined through symmetry requirements. In particular, the requirement that
the continuity equation be satisfied and that the susceptibility be a single-value function at
k = 0 leads to the following equations:

bμ = aμ + 3D + 2Eβ + Eη − 6
t

U
(Cα + Cλ − 2Cμ)

cμ = aμ − D − 2Eβ + Eη + 6
t

U
(Cα + Cλ − 2Cμ)

dμ = aμ − D + 2Eβ − 3Eη − 6
t

U
(Cα + Cλ − 2Cμ).

(66)

The remaining parameters aμ and �(μ)11 (k) are fixed by means of the Pauli principle

〈nμ(i)nμ(i)〉 =
{

n + 2D for μ = 0

n − 2D for μ = 1, 2, 3
(67)

where D = 〈n↑(i)n↓(i)〉 is the double occupancy, and by the ergodic value

�
(μ)

11 (k) = δμ,0
(2π)2

a2
δ(2)(k)〈n〉2. (68)

By putting (68) into (58) we obtain

〈δnμ(i)δnμ( j)〉 = a2

2(2π)2

2∑

n=1

∫
d2k eik·(Ri−Rj)−iω(μ)n (k)(ti−t j )

[
1 + coth

ω
(μ)
n (k)
2kBT

]
σ
(n,μ)
11 (k)

(69)

〈R[δnμ(i)δnμ( j)]〉 = ia2

(2π)3

2∑

n=1

∫
d2k dω eik·(Ri−Rj)−iω(ti −t j )

σ
(n,μ)
11 (k)

ω − ω
(μ)
n (k)+ iδ

. (70)

2.5. Outline of the calculation of G(k, ω)

In this section we will give a sketch of the procedure used to calculate the Green’s function
G(k, ω). The starting point is equation (19), where the two matrices I (k) and ε(k) are

10
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Figure 1. Self-consistency scheme to compute the propagator G in terms of the charge–charge and
spin–spin propagator B and the residual self-energy �.

(This figure is in colour only in the electronic version)

computed by means of the expressions (23) and (24). The energy matrix ε(k) depends on
three parameters: μ, �, and p. To determine these parameters we use the following set of
algebra constraints:

n = 2(1 − C11 − C22)

� = Cα
11 − Cα

22

C12 = 〈ξ(i)η†(i)〉 = 0

(71)

where C and Cα are the time-independent correlation functions C = 〈ψ(i)ψ†(i)〉 and
Cα = 〈ψα(i)ψ†(i)〉. To calculate �(k, ω) we use the SCBA; the results given in section 2.3
show that, within this approximation,�(k, ω) is expressed in terms of the fermionic Gcc(k, ω)
(cf (40)) and of the bosonic χ(k, ω) (cf (41)) propagators. The bosonic propagator is calculated
within the two-pole approximation, using the expression (70). As shown in section 2.4, χ(k, ω)
depends on both electronic correlation functions (see (63)), straightforwardly computable
from G(k, ω), and bosonic correlation functions, one per channel, ac and as . The latter
are determined by means of the local algebra constraints (67), where n is the filling and
D is the double occupancy, determined in terms of the electronic correlation function as
D = n/2 − C22.

According to this, the electronic Green’s function G(k, ω) is computed through the
self-consistency scheme depicted in figure 1: we first compute G0(k, ω) and χ(k, ω) in
two-pole approximation, then �(k, ω) and consequently G(k, ω). Finally, we check how
much the fermionic parameters (μ, �, and p) changed and decide whether to stop or to
continue by computing new χ(k, ω) and �(k, ω) after G(k, ω). Usually, to get six-digit
precision for fermionic parameters, we need eight full cycles to reach self-consistency on a
three-dimensional (3D) grid of 128 × 128 points in momentum space and 4096 Matsubara

11
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Figure 2. Spectral function at the chemical potential A(k, ω = 0) as a function of momentum k for
U = 8, (top left) n = 0.70 and T = 0.01 (top right) n = 0.85 and T = 0.01 (bottom) n = 0.92
and T = 0.02.

frequencies. Actually, many more cycles (almost twice as many) are needed at low doping and
low temperatures.

Summarizing, within the SCBA and the two-pole approximation for the computation of
χ(k, ω), we have constructed an analytical, completely self-consistent scheme of calculation
of the electronic propagator Gcc(k, ω) = F〈T [c(i)c†( j)]〉, where dynamical contributions
of the self-energy �(k, ω) are included. All the internal parameters are self-consistently
calculated by means of algebra constraints (cf (67), (68) and (71)). No adjustable parameters
or phenomenological expressions are introduced. In the next section we shall present some
results, by considering the spectral function

A(k, ω) = − 1

π
[Gcc(k, ω)]. (72)

3. Results

In figure 2, we report the spectral function at the chemical potential A(k, ω = 0) =
− 1
π
[Gcc(k, ω = 0)] as a function of momentum k for U = 8, n = 0.70 and T = 0.01

12
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Figure 3. Spectral function A(k, ω) along principal directions for U = 8, (top left) n = 0.70 and
T = 0.01 (top right) n = 0.85 and T = 0.01 (bottom) n = 0.92 and T = 0.028.

(top left panel), n = 0.85 and T = 0.01 (top right panel) and n = 0.92 and T = 0.02 (bottom
panel). Its maxima mark the effective Fermi surface as measured by ARPES. At large doping
(n = 0.70), we can recognize the typical behaviour of a weakly interacting Fermi metal: a well-
defined Fermi surface. We also have quite a low signal in the proximity of M = (π, π): the
reminiscence of the shadow band (see figure 3). At n = 0.85, we report an open Fermi surface:
we just passed through the optimal doping (n ∼= 0.82). This latter is marked by the change in
the topology of the Fermi surface between open and close and, consequently, by the coincidence
between the value of the chemical potential and the position of the van Hove singularity in the
band (see figure 3). At low doping (n = 0.92), the situation dramatically changes and the
scenario becomes that of a strongly interacting antiferromagnetic metal. The Fermi surface is
quite ill defined (it marks an open region of momentum space). The formation of a pseudogap
can be immediately deduced by the remarkable difference between the intensities at the cold
spots (the well-defined arch departing from S = (π/2, π/2), the nodal point) and the hot spots
(the regions in proximity of X = (0, π) and Y = (π, 0), the antinodal points). The imaginary
part of the self-energy is so intense on the outer part of the hole pocket to reduce it just to an
arch as reported by ARPES experiments [21]. The antiferromagnetic fluctuations are so strong
as to destroy the coherence of the quasi-particles in that region of momentum space and drive
the system towards the transition to a new quantum state.

In figure 3, we report the spectral function A(k, ω) along the principal directions (� =
(0, 0) → M , M → X , X → Y and Y → �) for U = 8, n = 0.70 and T = 0.01 (top left
panel), n = 0.85 and T = 0.01 (top right panel) and n = 0.92 and T = 0.02 (bottom panel). It
is worth noticing the extension of the flat region in the dispersion around antinodal points X and
Y . It grows systematically on decreasing doping, signalling the transfer of spectral weight from
the Fermi surface region as to contrast the destruction of the Fermi surface itself (see figure 2).
It is also worth noticing the formation of a hole pocket for the lowest doping. On increasing
the filling (reducing the doping), there is an evident transfer of spectral weight between the top
of the dispersion band and the antinodal points where van Hove singularities reside.

In conclusion, we have shown how it is possible to obtain a pseudogap scenario in the
2D Hubbard model within the composite operator method with the electronic self-energy

13
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computed in the self-consistent Born approximation. This scenario is just the one that has
recently been claimed for underdoped cuprates by ARPES experiments. In particular, we
have reported the formation of a pseudogap with related hot and cold spots and arcs on the
Fermi surface. It is worth noticing that the proposed formulation is completely microscopic,
exclusively analytical, and fully self-consistent. We have clearly shown that bare electrons are
just the wrong place to start: composite operators embody the newly formed (because of strong
correlations) elementary excitations of the system and constitute the correct starting point for
any perturbation theory. Dyson equations in terms of composite-operator non-interacting
propagators immediately show up residual self-energies with the desired mixture of fermionic
and bosonic fluctuations. The results that we have found can be summarized as follows: a very
low-intensity signal develops around M and moves towards S = (π/2, π/2) on decreasing
doping up to closing, together with the ordinary Fermi surface boundary, a hole pocket in the
underdoped regime; whenever a hole pocket develops, it is just the remarkable difference in
the intensity of the signal between the two halves of the pocket to make a Fermi arch apparent;
the pseudogap develops as a region in momentum (and frequency) with a very low-intensity
signal (corresponding to the phantom half of the hole pocket) present between the van Hove
singularity and the quite flat band edge (quite flat after the doubling of the Brillouin zone due
to the very strong antiferromagnetic fluctuations). We are now planning to include self-energy
corrections in the bosonic propagators (in order to analyse, within this framework, the well-
known magnetic resonant mode and its hour-glass dispersion) and take into account next- and
next-next-nearest-neighbour hopping terms in the Hamiltonian (in order to make quantitative
comparisons, and not only qualitative comparisons, with Fermi surface determinations from
experiments).
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